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ABSTRACT 
Research funded by the Electric Power Research Institute 

(EPRI) in the 1980s produced a series of Ductile Fracture 

Handbooks including J-integral solutions for structural 

components with cracks. The EPRI Handbook series was to 

serve as an elastic-plastic equivalent to stress-intensity factor 

handbooks that various authors published in the 1970s. The 

original EPRI research in this area significantly advanced the 

field of elastic-plastic fracture mechanics (EPFM), particularly 

for ductile instability analysis of structures.  However, the initial 

EPRI Handbooks were restricted to simple two-dimensional 

configurations, so were of limited practical value. Subsequent 

EPRI Handbooks published in the late 1980s contained 

numerous errors, and the technical basis of some solutions was 

not documented. 

Advances in computing technology in the past four decades 

have now made EPRI’s original vision practical. A project is 

currently underway to produce a new EPRI EPFM Handbook. 

This project entails over 23,500 3D elastic-plastic finite element 

analyses of cracked configurations. The process of generating 

the meshes, editing the input files, running the FEA solver, post-

processing the results files, and fitting results to parametric 

equations is highly automated. Most computations are 

performed on an EPRI (Linux) cluster with 36, high-end nodes. 

New parametric equations for the J-integral, crack opening area 

(through-wall cracks), crack mouth opening displacement, and 

load-line displacement (laboratory specimen configurations) are 

developed in this study. 

Keywords: Elastic-Plastic Fracture Mechanics, Finite 

Element Analysis, J-Integral 

 

 

NOMENCLATURE 
 

a  Crack depth 

  Ramberg-Osgood fitting parameter 

b  Characteristic length scale in original EPRI J eqn. 

1
   Contained yielding parameter for J-integral 

3
   Contained yielding parameter crack mouth opening 

displacement (CMOD) 

c  Half crack length 

E  Young’s modulus 

  Strain 

o
  Ramberg-Osgood reference strain 

ref  Reference strain 

1
  Contained yielding parameter for J 

3
  Contained yielding parameter for CMOD 

1
h  Geometry factor in the original EPRI J eqn. 

1
H  Fully plastic fitting parameter for J-integral solutions 

3
H  Fully plastic fitting parameter for J-integral solutions 

J  J-integral 

el
J  Elastic component of J 

pl
J  Plastic component of J 

CY

pl
J   Plastic J under contained yielding conditions 

FY

pl
J  Plastic J under fully yielding conditions 

I
K   Mode I stress intensity factor 

J
K   Equivalent stress intensity factor computed from J 

r
K  Toughness ratio (y-axis) on the FAD 
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r
L  Load ratio (x-axis) on the FAD 

1
m  Contained yielding exponent for J 

3
m  Contained yielding exponent for CMOD 

  Poisson’s ratio 

n  Ramberg-Osgood strain hardening exponent 

P  Applied load 

o
P  Reference load in original EPRI J eqn. 

i
R  Inside radius of cylindrical shell or elbow 

  Applied stress 

o
  Ramberg-Osgood reference stress 

ref
  Reference stress in new EPRI J eqn. 

YS
  0.2% offset yield strength 

t  Wall thickness 

V  Crack mouth opening displacement (CMOD) 

el
V  Elastic CMOD 

i  Constants on the J versus load relationship; 

1, 2,3i =  

 

1. BACKGROUND 
Fracture mechanics became an engineering discipline 

through research performed after World War II. The theoretical 

underpinnings of linear elastic fracture mechanics (LEFM) 

emerged in the 1950s and 60s. In 1972, Begley and Landes [1] 

demonstrated that the J-integral [2] could be used to quantify 

fracture toughness in ductile materials that fail beyond the limits 

of LEFM.   

Fracture stability analyses entail a comparison of crack 

driving force with fracture toughness. While the work of Begley 

and Landes addressed fracture toughness measurements for 

ductile materials using simple test specimens, a rigorous means 

to infer crack driving force for structural applications beyond the 

limits of LEFM was lacking in the 1970s. To address this gap in 

elastic-plastic fracture mechanics (EPFM) technology, the 

Electric Power Research Institute (EPRI) commissioned 

research with the goal of generating handbooks of J-integral 

solutions for structural components with cracks. The concept of 

a J handbook was borrowed from existing handbooks that 

contained elastic stress intensity (
I

K ) solutions. 

Kumar, German and Shih [3], who worked for General 

Electric (GE), authored the first EPRI Handbook in 1981.  This 

publication, EPRI Report NP-1931, greatly advanced the field of 

EPFM, particularly for ductile instability analysis of structural 

components with cracks. The authors of Report NP-1931 

developed a parametric equation for the J-integral driving force 

and they fit finite element analysis (FEA) results to this equation.  

The initial handbook included tables of fitting coefficients for the 

parametric J-integral equation. The J solutions in NP-1931 were 

limited to simple 2D configurations, given the inability of 

available computing technology to perform 3D elastic-plastic 

FEA simulations on practical structural components with cracks.   

A subsequent EPRI project produced a 3-volume set entitled 

Ductile Fracture Handbook in 1989 [4]. This handbook set 

included 3D configurations, but the basis of many of these 

solutions was not disclosed. Independent attempts to benchmark 

some of the solutions in [4] revealed numerous errors. Given the 

limitations in computing capabilities as of 1989, the purported J-

integral solutions for 3D configurations almost certainly did not 

arise from an elastic-plastic FEA parametric study. 

Now, four decades since publication of the original 

handbook [3], computing and software technology have evolved 

to the point where EPRI’s original vision can be realized. The 

authors of this paper are creating a new EPFM Handbook. This 

EPRI-funded project includes a massive 3D elastic-plastic FEA 

parametric study with over 23,500 analyses of cracked 

components. Such an endeavor is made practical with EPRI’s 

(Linux) cluster-server and various software tools that automate 

much of the workflow. The present authors have developed a 

new parametric equation for J that overcomes limitations of the 

original formulation in [3]. 

 
2. FITTING THE J-INTEGRAL TO FEA SOLUTIONS 

 

2.1 Original EPRI Formulation 
Kumar, German and Shih [3] developed a J estimation 

scheme in the form of a parametric equation that divided the 

J-integral into elastic and plastic components: 

 

 el pl
J J J= +  (1) 

 

The elastic component of J is related to the Mode I stress 

intensity factor as follows: 

 

 
( )2 21I

el

K
J

E

−
=  (2) 

 

where E is Young’s modulus and  is Poisson’s ratio.  

Consequently, the elastic component of J for the configuration of 

interest can be inferred from the corresponding elastic 
I

K  

solution. 

The plastic component of J is a function of the stress-strain 

properties of the material. The original EPRI procedure 

parameterized the material flow properties with the 

Ramberg-Osgood power-law relationship: 

 

 

n

o o o

  


  

 
= +  

 
 (3) 

 

where o
  is a characteristic stress (usually set to the yield 

strength), o o
E = , n is the strain hardening exponent, and  

is a fitting constant. 

Dimensional analysis and a small-strain assumption leads to 

the following expression for the plastic component of J: 
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where b is a characteristic length dimension (e.g., the uncracked 

ligament length), 
1

h  is a dimensionless geometry factor, P is a 

characteristic load, and 
o

P  is a reference load. For a given 

configuration, 
1

h  is a function of crack dimensions and n. This 

dimensionless factor is typically inferred from elastic-plastic 

finite element analysis.  EPRI Report NP-1931[3] includes tables 

of 
1

h  values for various 2D configurations. 

The authors of NP-1931 noticed discrepancies between 

elastic-plastic finite element analysis results and J values 

estimated from Equations (1) to (4).  These discrepancies were 

most pronounced at intermediate load levels between linear 

elastic and fully plastic deformation.  In this intermediate zone, 

a crack tip plastic zone is surrounded by material subject to 

elastic loading. The NP-1931 authors attempted to address the 

discrepancy by incorporating an Irwin plastic zone correction 

into the elastic component of J. 

 

2.2 Contained Yielding vs. Fully-Plastic Deformation 
Figure 1 illustrates three stages of loading for a cracked 

body made from an elastic-plastic material. Under purely elastic 

loading, LEFM applies and the J integral is proportional to load 

squared: 

 

 2

1elJ P=   (5) 

 

The functional form of Equation (4) applies to fully-yielded 

conditions: 

 

 
1

2

FY n

pl
J P +=   (6) 

 

Although the authors of NP-1931 recognized the existence 

of a contained yielding stage, their approximation with an Irwin 

plastic zone correction proved inadequate. Given a small plastic 

zone at the tip of the crack, the plastic component of J should be 

proportional to the plastic work dissipated by crack-tip yielding.  

The total work in the plastic zone should, in turn, be proportional 

to the cross-sectional area of the plastic zone on the x-y plane, 

where x is the direction of crack propagation and y is normal to 

the crack plane. Since the plastic zone radius is proportional to 
2

IK  in small-scale yielding, then plastic zone area is 

proportional to 
4

IK , which implies the following relationship 

for the plastic J under small-scale yielding conditions: 

 

 
4

3

CY

pl
J P=   (7) 

 

Equation (7) is not rigorously correct when the plastic zone 

size is a finite fraction of the remaining ligament, such that 

small-scale yielding conditions do not apply. Nevertheless, the 

forgoing heuristic derivation demonstrates that the plastic 

component of J exhibits a different dependence on load under 

contained yielding compared with the fully yielded condition. 

A robust parametric equation for the J-integral driving force 

should capture the transition from linear-elastic to contained 

yielding to fully plastic behavior. In the present work, the authors 

formulated such an equation by invoking the failure assessment 

diagram (FAD) concept, as described below. 

 

2.3 Expressing J-Integral Solutions as a 
Dimensionless Failure Assessment Diagram (FAD) 

The failure assessment diagram (FAD) is a fracture map that 

provides a visual representation of stable and unstable zones for 

a structural component that contains a crack. Several 

international standards, including API 579/ASME FFS-1 [5] and 

the British Standards document BS 7910 [6], have adopted the 

FAD method to assess fracture stability and flaw tolerance of 

structures. The FAD is merely a dimensionless representation of 

the crack driving force. 

Given a J-integral solution for a structural component, the 

driving force can be expressed as an equivalent stress-intensity 

factor by generalizing Equation (2) to elastic-plastic behavior: 

 

 
2

1
J

JE
K


=

−
 (8) 

 

The schematic on the left side of Figure 2 illustrates the 

relationship between 
J

K  and applied stress. The trend is linear 

when 
J I

K K= , but the driving force trends upward with plastic 

deformation. The right side of Figure 2 replots the graph on the 

left with a dimensionless y axis: 

 

 elI

r

J

JK
K

K J
= =  (9) 

 

Because the elastic component of driving force is in the 

numerator and total driving force is in the denominator, the curve 

trends downward with increasing stress. 

The x axis of Figure 3 can be nondimensionalized with the 

load ratio, rL : 

 

 ref

r

YS

L



=  (10) 

 

where ref
  is a reference stress, defined as the nominal applied 

stress multiplied by a dimensionless geometry factor. 

The authors of NP-1931 were among the first to express the 

J-integral driving force as a FAD curve. The FAD is a convenient 

way to represent J solutions visually and remains a useful form 

for fitting FEA results to a parametric equation. 

Standards that implement the FAD method, including 

API 579/ASME FFS-1 [5], and BS 7910 [6], contain several 
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functional forms for the FAD curve. One such equation accounts 

for the shape of the stress strain curve: 

 

 

1 2
3

2

ref r YS

r

r YS ref

E L
K

L E

 

 

−

 
= + 
 
 

 (11) 

 

where ref  is the reference strain, which corresponds to the x 

coordinate on the uniaxial true stress-strain curve at the reference 

stress. This functional form captures the linear-elastic, contained 

yielding, and fully yielded zones, as embodied in Equations (5) 

to (7). 

By setting 
o

  in Equation (3) equal to the 0.2% offset yield 

stress, the Ramberg-Osgood stress-strain model becomes: 

 

 0.002

n

YSE

 




 
= +  

 
 (12) 

 

Substituting Equation (12) into (11) gives 

 

 

1 2
2

1

1

0.5
1

1

n r

r r n

r

L
K L

L

−

−

−

 
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+ 
 (13) 

 

Invoking Equation (9) yields the following expression for the 

plastic component of J: 

 

 

2

1

1

0.5

1

n r

pl el r n

r

L
J J L

L

−

−

 
= + 

+ 
 (14) 

 

Since the elastic component of J is proportional to 
2P  

(Equation (5)), the first term in the parenthesis is consistent with 

the fully-yielded relationship of Equation (6).  The numerator of 

the second term in parentheses follows Equation (7) to capture 

contained yielding. The denominator of the second term in 

parentheses causes this term to vanish at high 
r

L  values, such 

that Equation (14) reduces to Equation (6). In other words, 

Equation (14) captures contained yielding behavior at low and 

moderate r
L  values, and it reduces to the fully plastic 

relationship at high r
L . 

 

2.4 New Parametric Equation for FEA Output 
Equation (13) is a viable candidate for a nondimensional 

parametric equation for the J-integral, as it transitions smoothly 

between the three deformation zones in Figure 1. In the present 

study, however, certain modifications were found necessary to fit 

elastic-plastic FEA results for an extensive range of 

configurations, crack dimensions, and hardening behavior. 

The following relationship incorporates additional fitting 

parameters into Equation (13): 
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1

1

1
1

m
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r r n

r

L
K L

L





−

−

−

 
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 (15) 

The dimensionless parameters 
1

 ,
1

m  and 
1
  provide more 

flexibility to fit J-integral results from elastic-plastic FEA.  The 

reference stress in Equation (10) is given by 

 

 

1

1

1

0.002 n

ref

YS

E
H 



− 
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 
 (16) 

 

where 
1

H  is a dimensionless fitting parameter and  is a nominal 

applied stress.  Equation (15) can be written in terms of J: 

 

 

1

1 1

1

1

1

1

m

ref
n

ref YS

el n

YS ref

YS

J J




 

 



−

−

  
  

   
= + +  

   +   
  

 (17) 

 

The above equation contains four dimensionless fitting 

parameters on the plastic component of J: 
1

H ,
1

 ,
1

m  and 
1
 .  

The dimensionless 
I

K  solution, necessary to compute 
el

J , 

constitutes a fifth geometry factor. 

Figures 3 and 4 show two examples of fits to elastic-plastic 

FEA J results.  The case considered here is an infinitely long 

external axial crack in a cylindrical shell under internal pressure.  

Figures 3 and 4 are dimensionless FAD plots for crack 

depth/thickness ( )a t  ratios of 0.2 and 0.6, respectively. The J 

results for the shallow crack exhibit a traditional FAD shape, but 

the deeper crack has an unusual shape. Equation (15) captures 

both cases. 

In keeping with the tradition of the original EPRI work [3], 

the new EPFM Handbook will include fits to additional output 

from the FEA analyses. Moreover, the present authors have 

adopted the numbering scheme from EPRI Report NP-1931: 

 

1. 
1 1
,H  , etc.: J-integral solutions. 

2. 2 2,H  , etc.: Load-line displacement in laboratory 

specimens. 

3. 
3 3
,H  , etc.: Crack mouth opening displacement 

(CMOD). 

4. 4 4,H  , etc.: Crack opening area (COA) in through-

wall cracks. 

 

The functional form of Equation (17) applies to all 4 

quantities. For example, the parametric equation for CMOD is 

given by 
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where 

 

 

1

1

( ) 3

0.002 n

ref V

YS

E
H 



− 
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 
 (19) 

 

3. SCOPE OF EPRI EPFM HANDBOOK 
The ongoing EPRI EPFM Handbook project entails over 

23,500 3D elastic-plastic FEA simulations.  Cases in-progress 

are outlined below. Figure 5 defines the notation for surface and 

through-wall crack dimensions. 

 

• Cylindrical shells 

o iR t = 2, 5, 10, 20, 50, 100, ∞ (flat plate). Ri is the 

inside radius of the cylindrical shell. 

o Axial and circumferential cracks. 

o Internal & external semi-elliptical surface cracks. 

▪ a t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. 

▪ c a = 0.5, 1, 2, 4, 8, 16, 32, ∞ 

o Through-wall cracks. 

▪ c t = 0.5, 1, 2, 4, 8, 16, 32 

o Internal pressure, axial stress, bending moment load 

cases.  Mixed axial/bending load cases. 

• Flat plates 

o Semi-elliptical surface cracks. 

▪ a t = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. 

▪ c a = 0.5, 1, 2, 4, 8, 16, 32, ∞ 

o Through-wall cracks. 

▪ c t = 0.5, 1, 2, 4, 8, 16, 32 

o Membrane, bending, and mixed membrane/bending 

load cases. 

• Piping elbows 

o iR t = 4, 90-degree long radius elbow. 

o Intrados/extrados, axial/circumferential cracks. 

o Internal and external surface cracks. 

▪ Same dimensions as cylindrical shells. 

o Through-wall cracks. 

▪ Same dimensions as cylindrical shells. 

o Internal pressure and bending load. 

• Piping to elbow girth welds 

o iR t = 4, 90-degree long radius elbow. 

o Intrados/extrados circumferential cracks. 

o Crack dimensions and load cases same as elbow. 

• Laboratory specimens 

o C(T), SE(B), SE(T), M(T) configurations. 

• Strain hardening exponent (all configurations) 

o n = 3, 5, 7, 10, 15. 

 

Finite element results, including J-integral, load-line 

displacement, crack mouth opening displacement and crack 

opening area (where appropriate) are fit to the equations 

described in Section 2.4, and the results tabulated for inclusion 

in the EPRI EPFM Handbook. The early chapters will contain 

background information on the technical basis and proper use of 

the method. 

A prototype software application that implements the new 

method is being developed on the Excel-VBA platform. 

 

4. FEA PARAMETRIC STUDY 
The project includes a very large FEA study consisting of 

over 23,500 3D elastic-plastic analyses that requires significant 

computing resources. The bulk of analyses are executed on 

EPRI’s Linux cluster (Apollo). The project also requires a high 

degree of automation through pre-existing software (FEACrack 

and WARP3D) as well as custom Bash and Python scripts. Two 

of the authors, GVT and RHD, are the lead developers of 

FEACrack and WARP3D, respectively, which enabled the 

project team to modify these products as needed for the present 

effort. 

 

4.1 FEACrack Software 
The FEACrack [7] software automates the generation and 

post-processing of the many thousand crack meshes needed for 

this project. A crack mesh is created by entering the geometry, 

crack location, crack orientation, crack shape, geometry and 

crack dimensions, and boundary conditions including a load, 

such as internal pressure. The generated crack mesh is written to 

a WARP3D FEA input file for analysis. The WARP3D packets 

results file is post-processed by FEACrack to examine the 

mesh’s deformed shape, stresses, and crack front J-integral 

results. The crack results are extracted to a summary text file for 

additional curve-fitting of the results. A command line version of 

FEACrack was created for this project to support scripting 

automation of the crack mesh generation and post-processing so 

that batches of models can be created, run, and post-processed 

using the Linux cluster computer. 

Figures 6 to 9 show typical meshes for cracks in a cylindrical 

shell. All models use 20-node isoparametric elements with 

reduced integration. The crack face color is light blue. The red, 

green, and orange mesh colors show the mesh zones used to 

adjust mesh refinement near the crack plane. 

 

4.2 WARP3D Finite Element Code 
WARP3D [8] is an open-source nonlinear finite element 

code optimized for fracture mechanics modeling. This software 

has been developed over multiple decades by one of the authors 

(RHD), along with his graduate students and postdoctoral 

fellows at the University of Illinois Department of Civil 

Engineering. 

Two compelling reasons led to use of WARP3D for this 

project rather than a commercial FEA program such as Abaqus 

or ANSYS: 
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1. No licensing costs are associated with WARP3D – tens of 

instances of the code may be executed concurrently across 

the cluster with each instance also running in parallel. 

2. The open-source feature enabled certain modifications 

described below. 

 

Nonlinear analyses of models with cracks and computations 

of J values require care in the selection of suitable load step sizes 

to ensure convergence of the global iterations and tracking of 

path-dependent plastic deformation (the solutions employed J2 

flow-theory plasticity and a small-geometry change 

formulation). The appropriate step size typically varies 

throughout the analysis as plasticity evolves along the crack 

front. Moreover, a sufficient set of results is needed for each 

simulation to fit Equation (15) in the elastic, contained yielding, 

and fully plastic regions. Because the present study considers a 

wide range of geometries, crack dimensions and hardening 

levels, there exists no single set of load steps suitable for all 

models. Consequently, an adaptive, J-based load stepping 

algorithm has been incorporated into WARP3D (included in the 

open-source code) that removes the need to specify load step 

sizes. 

The adaptive load stepping algorithm chooses the next step 

size in the sequence based on two criteria: the rate of increase of 

the 
el

J J  ratio at the maximum J location on the front, or the 

decrease in 
r

K , where 1r elK J J= . The analysis ends when 

a specified 
el

J J  is reached. 

The 
r

K  value proves the most effective metric early in the 

loading. Initially, 1.0
r

K =  and gradually decreases with the 

buildup of plasticity along the crack front. The adaptive code 

increases or decreases the step sizes to maintain a user-specified 

decrease in r
K  per step (e.g. 0.05

r
K = ). 

Once r
K  decreases to a value indicating moderate plastic 

deformation (e.g., 0.6-0.8), the adaptive algorithm switches to 

the 
el

J J  ratio to define the sizes of subsequent load steps that 

generate values for the larger Lr values. The user specifies a 

target value for the change in el
J J  over each load step, often 

0.1-0.3. This ratio is computed once the Newton iterations for the 

load step converge, and the domain integral computations are 

completed.  After a few load steps, the adaptive algorithm is quite 

effective at adjusting load step sizes to maintain the target 

increment in el
J J . A typical solution uses 100-150 load steps 

to define the full extent of the FAD curve for a given 

configuration. 

 

4.3 FEA Workflow 
Figure 10 shows the workflow in the FEA parametric study.  

An FEACrack input file (*.ELT) contains data for geometry, 

component dimensions, crack location/orientation, crack 

dimensions, material properties, and boundary conditions.  A 

single ELT file generally contains dimensions for multiple 

cracks.  Example: for semi-elliptical surface cracks in cylindrical 

shells, plates and elbows, the ELT file for a given set of 

component dimensions and boundary conditions contains data 

for 63 crack sizes, which generates 63 WARP3D input files 

(*.inp). The command line version of the FEACrack mesh 

generator mentioned in Section 4.1 performs batch processing of 

multiple ELT files in a directory; a single command produces a 

large number of .inp files. 

Normally, a .inp file created with FEACrack is ready to run 

in the solver. In this project, the stress-strain data are omitted 

from the .inp files created by the mesh generator.  Moreover, only 

the first load step with a quite small size (linear-elastic) is 

specified in the .inp file; subsequent steps are determined in the 

adaptive algorithm. Bash/Python scripts create 5 copies of each 

.inp file to include the stress-strain data corresponding to n = 3, 

5, 7, 10, and 15 and also include adaptive load stepping 

commands in each input file.  

Mesh generation and .inp file editing are performed locally 

on Windows/Mac workstations. The completed .inp files in 

groups often exceeding 500 are then moved to the EPRI Apollo 

cluster, where Bash/Python scripts manage submission of the 

analyses and organization of the many thousands of result files. 

In a typical set, WARP3D executes concurrently on 25-30 cluster 

nodes with each instance using 25 threads (cores) on each node. 

When WARP3D completes each analysis, scripts execute the 

command-line version of the FEACrack post-processor which 

writes the J-integral results into a more compact text file, as well 

as the displacements of selected node sets. The latter are used to 

infer load line displacement, crack mouth opening displacement, 

and crack opening area (as appropriate).  The compact, crack 

results files are also used in curve fitting as described below. 

 

4.4 Fitting Procedures 
Given the large number of FEA cases produced within the 

project, the process to find the 4 plastic fitting coefficients, in 

Equations (15) to (19) has been fully automated. The procedure 

seeks to fit coefficients that vary smoothly with the geometry 

variables and the hardening exponent, as shown in Figure 11 for 

1
H . The end-user can then interpolate the coefficients directly 

rather than needing to interpolate the computed J integral curves. 

This was achieved using the following procedure: 

 

1. The curve-fitting optimization is performed on a case that is 

central across the space of geometry variables and hardening 

exponent, Figure 11 (a). In the first pass, only the 
1

H , 
1

  

and 
1

m  parameters are fit and the 
1
  parameter is held fixed 

with a value of 1.0. 

2. The 1
H , 1

  and 1
m  results of the central case set the 

starting seeds for the curve-fitting optimization of the 

adjacent cases in the space of geometry variables and 

hardening exponent. 

3. The curve fitting continues, moving outwards from the 

central cases, using the results of the nearest adjacent case 

as the starting seed for the optimization. 
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4. Once all cases are fit, using the previous solutions, allow the 

optimization to re-compute all 4 of the plastic fitting 

coefficients. 

5. Develop a radial basis function (RBF) to the results of each 

fitting coefficient across the space of the geometry variables 

and hardening exponent [9]. Use the RBF to identify cases 

where the optimization has converged to a local optimum 

that is off trend from the adjacent cases. Re-fit the RBF with 

the off-trend cases excluded and use this RBF to select new 

seeds to re-fit the case. Repeat Step 5 until no cases are left 

that are assessed as off trend. 

 

5. CONCLUDING REMARKS 
EPRI’s original vision of an EPFM Handbook was 

impractical in the 1980s but is coming to fruition with the aid of 

modern computer hardware and software. The computational 

effort undertaken in this project is unprecedented in the field of 

nonlinear fracture mechanics. The new Handbook will include 

tables of fitting coefficients for over 23,000 FEA solutions. 

Future efforts can focus on expanding the library of elastic-

plastic crack solutions. In addition, a prototype software 

application that implements the new method is being developed 

on the Excel-VBA platform. 
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FIGURE 1: THREE ZONES OF DEFORMATION IN A CRACKED BODY. 
 

http://www.questintegrity.com/software-products/feacrack
http://www.questintegrity.com/software-products/feacrack
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FIGURE 2: CRACK DRIVING FORCE, 
J

K , AS A DIMENSIONLESS RATIO TO CREATE A FAD CURVE. 

 
 

FIGURE 3: FIT OF J RESULTS FOR A LONG EXTERNAL AXIAL SURFACE CRACK WITH 0.2a t = . 
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FIGURE 4: FIT OF J RESULTS FOR A LONG EXTERNAL AXIAL SURFACE CRACK WITH 0.6a t = . 

 
 

FIGURE 5: CRACK DIMENSIONS FOR SURFACE AND THROUGH-WALL CRACKS. 
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FIGURE 6: FINITE ELEMENT MESH FOR AN AXIAL THROUGH-WALL CRACK IN A CYLINDRICAL SHELL. 

 

 

 
 

FIGURE 7: FINITE ELEMENT MESH FOR AN INTERNAL CIRCUMFERENTIAL SURFACE CRACK IN A CYLINDRICAL SHELL. 
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FIGURE 8: FINITE ELEMENT MESH FOR AN EXTERNAL AXIAL SURFACE CRACK WITH INFINITE LENGTH. 

 

 

 
 

FIGURE 9: FINITE ELEMENT MESH FOR AN EXTERNAL 360-DEGREE CIRCUMFERENTIAL CRACK IN A CYLINDRICAL SHELL. 
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FIGURE 10: WORKFLOW FOR THE FEA PARAMETRIC STUDY. 

 

 

 
(a)         (b) 

FIGURE 11: CURVE FITTING RESULTS FOR AXIAL THROUGH-WALL CRACKS WITH VARYING c t  RATIOS SHOWING (a) A 

SMOOTH TREND IN PLASTIC FITTING COEFFICIENT 
1

H  AND (b) AN ACCURATE REPRESENTATION OF THE FEA RESULTS AND 

SMOOTH INTERPOLATED FAD CURVES. 

R/t

c/t

H1


